首页> 外文OA文献 >Almost holomorphic embeddings in Grassmannians with applications to singular symplectic submanifolds\ud
【2h】

Almost holomorphic embeddings in Grassmannians with applications to singular symplectic submanifolds\ud

机译:Grassmannian中的几乎全纯嵌入及其在奇异辛子流形上的应用\ ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we use Donaldson's approximately holomorphic techniques to build embeddings of a closed symplectic manifold with symplectic form of integer class in the Grassmannians Gr(r, N). We assure that these embeddings are asymptotically holomorphic in a precise sense. We study first the particular case of CPN obtaining control on N and we improve in a sense a classical result about symplectic embeddings. The main reason of our Study is the construction of singular determinantal submanifolds as the intersection of the embedding with certain "generalized Schubert cycles" defined on a product of Grassmannians. It is shown that the symplectic type of these submanifolds is quite more general that the ones obtained by Donaldson and Auroux,as zeroes of "very ample" vector bundles.\ud
机译:在本文中,我们使用唐纳森近似全纯技术,在Grassmannian Gr(r,N)中建立具有辛类整数形式的封闭辛流形的嵌入。我们保证这些嵌入在精确意义上是渐近全纯的。我们首先研究CPN在N上获得控制的特殊情况,并且在某种意义上我们改进了关于辛嵌入的经典结果。我们研究的主要原因是奇异的行列式子流形的构建,即嵌入与格拉斯曼积上定义的某些“广义舒伯特循环”的交集。结果表明,这些子流形的辛类型比“唐纳森”和“ Auroux”所得到的辛流类型更为普遍,为“非常充足”的向量束的零。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号